Теория:
1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:
2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:
3. Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики:
4. Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, и каждую триаду заменить соответствующей восьмеричной цифрой. Похожее правило действует и для шестнадцатиричной системы - но там число разбивается на тетрады. В этом поможет разобраться таблица:
Задача 1. Вычислите сумму чисел X и Y, если X=1101112, Y=1358. Результат представьте в двоичном виде.
Переведём число Y=1358 в двоичную систему счисления, заменив каждую его цифру соответствующей триадой: 001 011 1012. Выполним сложение:
Ответ: 100101002.